The new altimetric module in Snow Microwave Radiative Transfer Model for snow (SMRT)

<u>Ghislain Picard</u>¹, Fanny Larue¹, Jeremie Aublanc², Pierre Thibaut²

Melody Sandells³, Henning Löwe⁴

Justin Murfit⁵, Claude Duguay⁵

1 UGA -IGE, Grenoble, France
2 CLS, Toulouse, France
3 U. Northumbria, Newcastel, UK
4 SLF, Davos Dorf, Switzerland
5 U. Waterloo, Canada

Context

SMRT origin and present status:

2015-2017:

SMRT is initiated in the MICROSNOW ESA project on snow microstructure signature in the microwaves i.e. "grain size scattering". → passive microwave focused.

2018:

Development of a sea-ice module. Fresh ice / lake-ice is a side product.

2019-2020:

- Development of an altimeter module in the ESA Polar Monitoring / Cristal
- First validation in Antarctica

2020 - :

LIAM (PI. C. Duguay) : validation of SMRT Altim on frozen lakes
AKROSS (PI. M. Sandells): validation of SMRT Altim on sea-ice

MEMLS, HUT, DMRT-ML, DMRT-QMS are widely used passive and/or active microwave radiative transfer models for snow (not for altimetry).

SMRT could be defined as: a new-generation passive/active microwave radiative transfer model for snow and other cold environments.

Science: a better description of the snow microstructure

Practice: It is easier to use and easier to extend in a consistent way

Snow Microwave Radiative Transfer (SMRT)

SMRT is a highly structured and modular model.

Some advantages of this structure:

- the altimetry module works for snow, seaice, lake ice, ... and future developments
- combined passive / altimeter, total backscatter radar simulations is easy

SMRT's nadir altimetry model computes the waveforms in two steps:

<u>1- compute the **vertical** profile of backscatter</u>

Sigma = f(z)

- backscatter from the surface
- backscatter from the volume (scattering)
- backscatter from the inter-layer interfaces
- backscatter from the substrate (bottom interface)

Main approx: 1st order backscatter only

<u>2- distribute in time accounting for the **horizontal** <u>spread/delay of the wavefront</u></u>

- Brown 1977's model \rightarrow flat or tilted surface.
- « convolution with the pulse surface response »

Main approx: LRM model, no complex topography

Sigma = f(t)

Nadir LRM altimetry in SMRT

Illustrations: a snowpack with 4 layers with increasing scattering strength

Validation in Antarctica

Acquisition of in-situ data during two traverses in East Antarctica (2016 and 2019) and at Concordia station

Validation in Antarctica

7 sites with high-quality measurements: slope, mean temperature, roughness (MSS), profiles of grain size and density

· · · · · · · · · · · · · · · · ·								
Name	Latitude	Longitude	Slope	$\sigma_{\rm surf}$	T	MSS	SSA	ρ
$\mathrm{stop}5^A$	-68.75	137.44	0.02	0.31	-37.2	0.03	11.6	448
$\mathrm{charcot}^A$	-69.38	139.02	0.13	0.33	-37.9	0.02	12.0	433
$\mathrm{stop}0^A$	-69.64	135.28	0.01	0.18	-41.1	0.02	12.4	437
$\mathrm{stop}2^A$	-69.95	138.55	0.05	0.34	-40.4	0.03	12.4	449
$\mathrm{stop}3^A$	-70.06	141.20	0.21	0.45	-38.9	0.05	11.5	446
$ago5^E$	-77.24	123.48	0.09	0.32	-54.4	0.01	7.4	361
$paleo^E$	-79.85	126.20	0.08	0.30	-50.5	0.01	7.7	392

Validation in Antarctica

Results for AltiKa, ENVISAT and Sentinel 3A (LRM mode)

Total basckscatter:

Clear increasing trend for the coastal regions to the interior

The model says:

- surface roughness is the main factor (smoother in the interior)
- grain size, density and temperature are also significant factors

Waveforms:

Contributions of the surface, volume, inter-layer interfaces:

- The surface backscatter dominates at all the frequencies

- Volume scattering is larger at Ka-band ... but penetration depth is much less than at the lower frequencies . With pd ~0.5 m, the volume echo comes very closely after the surface echo.

- in Ku band, a *large* penetration depth but a *small* volume contribution
- in Ka band, a *small* penetrationdepth byt a *large* volume contributuon

→ Uncertain consequences for the elevation bias.

Elevation bias simulations:

- same order of magnitude at Ku and Ka bands

- the bias does not depend on the same factors at both bands (roughness, grains, ...)

First results on frozen lakes

Ongoing ESA LIAM project

(PI Claude Duguay, U. Waterloo)

Coupling between the thermodynamical model CLIMo with SMRT. Work by J. Murfit (PhD student)

- predict ice and snow state as a function of time
- nadir simulation of T_{B}
- nadir simulation of total backscatter
- first simulations of waveforms

SMRT allows consistent multi-sensor simulations → asset to develop smarter retrieval algorithms

Time (ns)

- A new altimeter model for snow, sea-ice, frozen lakes, ...

Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT)

Fanny Larue^a, Ghislain Picard^a, Jérémie Aublanc^c, Laurent Arnaud^a, Alvaro Robledano-Perez^{a,b}, Emmanuel Le Meur^a, Vincent Favier^a, Bruno Jourdain^a, Joel Savarino^a, Pierre Thibaut^c in press

- SMRT has been coupled with a more advanced altimeter simulator: AltiDop (J. Aublanc, P. Thibault, CLS, Toulouse). It takes into account REMA (8m DEM in Antarctica).

- Validation on sea-ice is ongoing. ESA AKROSS (M. Sandells, U. Northumbria)

Future works:

- implement retrackers in SMRT \rightarrow investigate elevation bias
- implement SAR and others altimetric modes → Cryosat, Cristal

SMRT is open-source: http://github.com/smrt-model/smrt Welcome to use it, welcome to improve it !